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The bankability is one of the most important aspects in the wind energy production projects. Bankability is P | . : : oy : Ce -
S ) e ST O ' or more than one target we take the minimum in each bin. This will give us a list of das for each reference.
based on one major point : reliability. The more the prediction is reliable, the more the banks will be ready to

invest in a project. That’s why we have to be able to estimate the uncertainty of an annual energy production.
This uncertainty is due to impredictability of climate, uncertainty on the turbines’ yield, but also uncertainty
on the predicted wind flow calculated by CFD softwares. These softwares solve Navier-Stokes equations at each
eridpoint of a map, and so the discrete solution is not perfect, not certain.

However it is possible in some cases that a reference point has a measuring instrument that is recording
data for more than one period. In this case, we do a weighted average over the alphas of this reference across
all the periods using the number of data points as the weights. The idea here is that more number of data
points will give us less uncertainty. The value of d« is then weighted using number of data points in each bin
across the periods. Lets consider a project where we have three periods (with respectively Nj, N2 and N3 data
points) and one of reference say a met mast is recording for all three periods. Its o and da are computed as
(considering the measurements independant):

The aim in a pre-construction campaign is to have measured data from some measurement devices (met masts
and ground based LiDARs for example) and this way know the real wind flow at these points. But how can we
build a law of uncertainty on the other map points? This will be explained in the future of this document.
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Let us define the backround of the following explanations. In a future wind farm site, there are some measure- o — Niay + Noag + Nzaz, Sov — Nioay + Nyoos + Nyoog

ment points. For each point, we consider it once as the reference point, and we look at the measured values at Niot N2,
the others points, considered as targets. And we do this for each measurement point.

After analyzing all the periods and all the references in them, we move on to create an uncertainty map
that shows the spatial variation of these reference-specific laws applied together at each grid point. We use the
following law for creating the map :
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The first step in building this uncertainty model is quantifying the uncertainty o itself. We define it as the — — W I S — ., e&R2
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standard deviation on the difference of the values of speed-ups (ratio of target to reference wind speed) found
with CFD simulation and from the measured values of the sensors on site (like WindCubes or met masts). If
k is the speed-up, and N the length of the time stamp, we have

Figure 5: Depending on the point we do the extrapolation (here A or B), we use the

Figure 4: Variation of 0o with one and two targets
propagation law of different references (here 1 and 2)

This ensures that we are taking the most accurate of the worst cases. This gives us a map of the site, with the

;N , estimated wind modeling uncertainty at each grid point, like we can see it in figure 6.
g = E E ((kmeas — kCFD) — (kmeas — kC’FD)) o
\ ' meas=1 |
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Since it is impossible to cover all the locations during the measurement campaign, we want to use the extrap-
olation method to subdue this problem.

0.16
0.14
0.12 0
0.10 SR
R
0.06
0.04
0.02
0.00

0.16

0,
#'.

e i 010

0.14 ) .

ALK e, /

o 2 l(,,"é{’% 2 0.08 Ho.075
iy Z 0.06

0
o, ;,"l

0.10
0.08
-0.060

0.06
0.04
0.02

0.00

657500

657200 0.045

The first observation we dit is that the maximum of o allways appears before 2000 data points (about 2
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weeks), so we are sure to have an upper bound of the real uncertainty after only two weeks.
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v As we can see 1t on the previous map, having more measurement points will reduce the global uncertainty
0021 | | on the wind farm site. Indeed, with more references, the distance to the nearest one for each grid point will
, ,
0.00{ ! be reduced. That’s why MeteoPole is encouraging its clients to use moving sensors in addition to the masts.
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Figure 2: Evolution of ¢ over time Figure 3: One of the first observations about o,,,, Uncertainty
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Then, we have thought about a linear law for extrapolation (o versus distance) because it came up in our first \
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projects, and with a good correlation coefficient of approximately R? = 0.94 (for the maximum of o over time \
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Once we have noticel this linearity, next step is to use the idea of target and reference to build the model and - el
implement the extrapolation law. As a reminder, a reference is a point where we have a sensor and a target is Bankability | -------—---- - oo TT====w— | Traditional campaign + 2 moving remote sensors
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a point in the space where we want to extrapolate o values from the reference.
Clearly uncertainty at the location where the measuring instrument is placed will be zero and as we move away F MeasurementCamipaign BrRtion
t t 4

from this location it varies according to the extrapolation law. Choosing references as well as targets to be at . _ . , : :
_ e _ _ _ . . Figure 7: The use of moving sensors is beneficial for global uncertainty
locations where we have a measuring instrument will help us in cross-correlating concurrent data from different

references (met masts or remote sensors). Hence when we talk about a reference from now on we will consider One step further: reducing measurement time even for the moving sensors

all other references as targets for it. thanks to data of other pro jects

We are interested in finding reterelznf:e—spemﬁc laws because the- wmc} resource .a.rm:md each rete]?ence l.S different. Once this map is created, the next step is being able to predict the future uncertainty without ending the
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stha ( o ) {t 15 ?,ntlre y possible that WILE TESOULCE alol _m? eretences 1b'grea.t yoal erent. Since our example). Indeed, it would be absurd not to use the previous recorded data (at a same ZIX of course).
approximation is a linear all we have to do is find the slope of this linear law («) for each reference to find our

reference-specific laws (the reference-specific law 1s: ¢ = «a x distance). : : : : : : . :

_ : b . ( . P SO s ance) . . . The idea is, regarding this ZIX, to say how much the uncertainty will statistically decrease if we let the
The intercept of the linear law is zero because as discussed above the uncertainty at the reference is zero (at

sensor in its place, with a certain probability.
So in our database, we create a different curve for each ZIX, showing the evolution of a versus time. This
curve is an average of all the curves registered on the several reference-target couples, with standard deviation

at each moment.

d=0).

For each reference we first find « in all the periods with concurrent data by using c,,42 OF Tperioa (this is the last
value of the measured period, like 0.09 on figure 2) and applying @ = o /d where d is the distance between the
target and reference. Actually the most appropriate is to use o,.,;0q4 because this tells the uncertainty reached

at the end of the measurement period, but o,,.. gives a upper value. This calculation of « is done for all pos- B s o °
sible targets for a particular reference and then an average is taken over all these values of «v. Doing this for all e ® e ° °
the references gives us reference-specific laws in this concurrent period. Similarly, this is done for all the periods. . °c . °
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While estimating alphas for all references in a period we add to the uncertainty by averaging and hence it o ° *
becomes important to estimate this uncertainty on uncertainty (5::15) to make our model more accurate. The | ® . ° ., °
value of dav is calculated as the standard deviation on the « values for all the targets corresponding to a par- |
ticular reference. T 0w o0 s . , , - .
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now the uncertainty on «a but actually only in the direction of the target; in the other directions we are less point ’
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sure about it. For one reference, uncertainty on « increases from da in the direction of a target to 1.5 x o In the long run, the idea is to use Machine Learning (and especially Artificial Neural Network) to "predict

in the opposite direction in a linear fashion (arbitrary value for now). To take into account this variation we the continuation of this a(t) curve, only by studying its shape on the first days/weeks. Indeed, if we can really
consider bins across each reference and find d« for each of these bins. predict the curve or at least a very late value, it makes the client gain time because thanks to it he can move

the Remote Sensor and having another measurement point. This idea is drawn on figure 9.
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