Zephy Science

Technical Note on the ZephyCloud Open-API - June, 2018

ZephyCLO

0p)

Bringing Limitless Computational Engineering to Wind Industry

Deliverable 4.1 - Technical Note on the ZephyCloud Open-API

ZephyOpen

Co-funded by the Horizon 2020 programme
of the European Union

Project no.

783913

Project acronym

ZephyCloud-2

Project title

Bringing Limifless Computational Engineering to Wind Industry

Starting date

01.10.2017

Duration

21 months

Deliverable ftitle

Technical Note on the ZephyCloud Open-API

Due date of deliverable | 30.06.2018
Work Package WP4
Task(s) involved T4.1

Type R
Dissemination level PU

Prepared by

Zephy-Science

ZephySGence Technical Note on the ZephyCloud Open-API - June, 2018

Infroduction

Context

After a phase one project successfully delivered in 2016, Zephy-Science has been awarded in 2017 by the
European Commission under the framework of Horizon 2020 Program with an additional phase two granfs for
a two-year R&D program. One of the main objecfives of this program is fo develop open-API| parmerships
with wind energy players from academic and business organizations who are developing modeling chains
based on opensource solvers which are running on local servers, thus constrained in accuracy. Indeed, cloud
bursting can solve a critical problem in the wind industry which is the compromise between accuracy and
speed:

e accuracy being a growing funcfion of time with fraditional on-premise calculations, accuracy is limited
due fo slow simulafions and fight project deadlines;

e accuracy being a growing funcfion of cosf with cloud bursting, accuracy is unlimited and only cosf-
effectiveness (value for money) should be addressed in defining R&D strategies.

This program, called ZephyOPEN, has been launched in June 2018.

Summary

In a first secftion, the concept of ZephyOpen is described.
Secondly, its usage and pricing sfrafegy are discussed in more defail.
Eventually, information relared to ZephyOpen fechnical design are addressed in a last secfion.

1 ZephyOpen - the concept

Opening our advanced cloud calculation engine to developers through Open-API

A few definifions first:

ZephyCloud Open-API consists of an Application Programing Inferface (API) specifically developed for mak-
ing the ZephyCloud-2 calculation power available to third-party developers and letting them build and sell
new modeling chains while getfing access to ZephyCloud’s competitive advanfage.

ZephyCloud is the back-end service used fo perform burst computing from software applications through
Extern Computing Services, charged fo the end-user in ZephyCoins, a virtual currency whose price depends
on the user’s subscription level. The cloud computing servers are provided by Amazon Web Services.

The modelling chains developed by external developers, either independently or in a partnership with Zephy-
Science, will be hosted on ZephyFARM. ZephyFARM is the public front-end web-browser client application,
powered by ZephyCloud, which will act as the plafform offering both pre- and post-consfruction modelling
solutions for both offshore and onshore wind farms.

This Open-API platform is aligned with our ambition fo foster collective infelligence while opening up new
client channels for our Cloud service.

1.1 Value

We will develop a specific APl of the ZephyCloud-2 calculation engine addressed fo third-party developers
who want fo leverage the competifive advantage of ZephyCloud-2’ s computational power in their own
simulafion products without having fo deal with complex cloud implemenfafions headaches.

Opensource-based modeling chains can now generate new and automated revenues through ZephyFARM
platform.

This allows to commercialize ZephyCloud-2 under Plafform-as-a-Service (PaaS) model.

Zephy Science

Technical Note on the ZephyCloud Open-API - June, 2018

1.2 Ciriteria for Success

Each of the following points is considered as a criterion of success.

The open-API service is designed to:

e ensure security of the platform;

¢ ensure the scalability of the computafional fleef (allow bursfing);

¢ ensure the scalability of the computational power (allow building clusters of instances);

e be flexible fo allow updates without breaking fthird-party applicafions’ functionalifies.
The new modeling chain included within ZephyOPEN should:

e always be available and ready to be run 24/7;

e be accessible either from ZephyFARM web-platform or from direct request to the API;

¢ be available globally (including China).

1.3 Partner Adoption

ZephyOpen is dedicated to opensource-based modeling chains solving problems related to the wind industry.

Modeling chain developers (ZephyOpen Partners) may want fo implement their work within ZephyOpen,
in order fo...

e confribure in enhancing wind industry sfate of the arf;

e generafe new sources of revenues;

e solve queuing issues when the computing charge exceeds their own hardware capacifies.
It should thus be mainly oriented rowards:

e Universities and research institutes;

e Enfrepreneurs;

e Major wind industry players having developed an infernal opensourced-based workflow.
For this purpose, several Open Innovation Programs have been designed:

o ZephyACADEMIA, designed for wind energy research insfitutes and universifies;

e ZephySTART, designed for wind energy consulfing enfrepreneurs;

e ZephyEXPERT, designed for wind energy leading consulfing firms.

1.4 User Adoption

The new public modeling chain included within ZephyOpen are highlighted and promoted within ZephyFARM
so fthat each user connected fo ZephyFARM should know about the value of the infroduced sub-module.

2 ZephyOpen Usage
2.1 Pricing strategy

The agreement befween Zephy-Science and the ZephyOpen Partner around pricing sfrafegy should define,
for each of the Gold and Free sfafus:

e the end-user fixed prices
¢ the margin factors fo be applied on the service.

The financial structure as defined in an Agreement and accepted by both Parties is the following.

Zephy Science

Technical Note on the ZephyCloud Open-API - June, 2018

— Each end-user will be using the service by spending a given amount of ZephyCoins, referred as the
end-user’s price Pysgr.

It should be noticed that two types of users are now possible: Free and Gold users (depending on the
chosen ZephyCloud subscription).
Free users are charged 5 times more than the Gold ones.

— Each fime the service is launched, the corresponding amount of ZephyCoins is directly deduced from
the end-user’s credits.

— Each time the service is launched, the ZephyOpen Partner is noftified about the application request.

— Each time the service is ended, end-user and the ZephyOPEN partner are nofified about the result
availability.

Pysgr is divided befween a cloud cost part Poroup and a service part Psgry, both in ZephyCoins.

Pyser = Pcroup + Psgrv

— Pecroup Is the cloud computing price; it should be transparently defined by ZephyScience and fully
agreed with the ZephyOPEN partner (refer to "Project Technical Specifications”). Poroup can follow
a pricing grid depending on the accuracy requirements of the user, however Poroyp should aim fo
keep a profit as close as possible as the on-demand cloud calculations, keeping a descent marge fo
cover the most expensive calculafions for a given cafegory. If should be noficed that 5% of the profit
generated by Prrow Will fund the OpenFoam fundation.

— Pgsgry is the service price; it should be defined by the ZephyOPEN partner.

Psgry is eventually divided between ZephyScience Pzs and the ZephyOPEN parftner Pzop, both in Zephy-
Coins. Nofte that the figures given below are only indicative and should be redefined specifically for each
project.

Psgrv = Pzs + Pzop

Pzs = max(Pzsmin, ROYzs * Pzop)

Py smin: Majored processing cost Pzgmin = 0.2Z¢
ROYyg: royalty on service execution ROYzs = 5%

Eventually, a recurrent price is charged on a weekly basis fo cover for the storage costs of the data managed
by the tool-chain.

2.2 Partner Usage

ZephyOpen parfner usage is described in Figure 1. In this Figure, different possible situafions are covered:
e Public or private modeling chain;
e Services requiring a graphical client or nof.

ZephyOpen toolchain creation is described in Figure 2.

2.3 End-user Usage
ZephyOpen user usage is described in Figure 3.

ZephyScience

Technical Note on the

ZephyCloud Open-API - June, 2018

Register to ZephyFARM

Connect ZephyFARM

Register to ZephyOpen

Create a toolchain

(9] YES

<, reguires GUI? &

|

(Start using your toolchain)

public toolchain?

(Agreement around end-user pricing)

(Develop own frontend out of ZephyFARM)

public toolchain?

'

(Agreement around end-user pricing) [Collaboratlon toward implementing

appropriate frontend in ZephyFARM)

(Start using own frontend)

!

(Start using your toolchain)

2

(ZephyFARM users start using your toolchain)

Figure

3 Technical Design

3.1

An overview of the architecture is given in Figure 4

Architecture Overview

3.2 Security

!

(Frontend runs the toolchain in ZephyCIoud)

1: Partner usage: Overview

The security is designed to work against three kind of potential aftackers:

e exfernal affackers
e malicious/buggy end users

e malicious/buggy partners’ fool-chains

3.2.1 General security against attackers

We are using mulfiple preventive measures.
¢ Moniforing tools, based on Elasticsearch, Fluentd and Kibana.
e Alerfing system, based on Prometheus.

e Supervision, based on Grafana.

e Infernal network security, based on key-based authenficafion, ssh funneling, and firewalls.

ZephyScience

Technical Note on the ZephyCloud Open-API - June, 2018

Creation/

(Go to your ZephyFARM dashboard)

[Access to the "ZephyOpen Partners" page)

!

(Choose “Create new toolcham“)

Set name

Configuration/

[Select private or public too\chain)

public toolchain?

Define pricing

Example:
o linux x68_64

Choose the system

Example:
(Choose your toolchain environment epython 2.7
*OpenFoam 5

(Select your requirements H Eeelple: l
s numpy

) Example:
[Select or create a new input formatH « type: "Mash file, format: ".goe"Bl

(Select or create a new output format)

{5(7_

[Change configuration andfor too\cha\n)

Upload the toolchain

Testing]

Click on "Test toolchain” '
Choose input files
Launch test

Get logs and outputs

test succeed?

Save toolchain

Figure 2: Partner usage: Create a fool-chain
6

Zephy Science

Technical Note on the ZephyCloud Open-API - June, 2018

User ZephyOpen Toolchain 1 | | Toolchain 2
or custom frontend Custom storage
Configure toolchain J-I
Send input files
Save input files >
ok
Ok L
launch .
Send input files}
Ok
<C0mpute>
What's my computing status ?
< Running stage 1: progress 27% [
_ Send result
ok
Launch o
Send intermediary files >

Ok

<Compute>

What's my computing status ?

__ Running stage 2: progress 43% [

_ Send result

<

ok

What's my computing status ? “|-

_ Computing finished successfully

Using default ZephyDpen Storage

Asks for results

k.
F

Get result files

¥

Send result files

. Send result files

-

orif yofu want to use your ownéstorage

Asks for results |

T
-

_, Send result files

-

User
or custom frontend

Custom storage

ZephyCpen Toolchain 1 Toolchain 2

Figure 3: User usage
7

Zephy Science

Technical Note on the ZephyCloud Open-API - June, 2018

Userl User 4 User 2 User 3
Uses (browser) Uses (browser) ses Uses
ZephyOpen Partner}
Y Y
admin farm ZephyCFD ZephyTools Custom tool
/
APl calls ™ APl calls / APl calls AP calls APl calls
:—'—'—'_'_—'_.-'_‘_'_

APl calls |API calls zephycloud [

APl calls Qige
£

banlk Cloud provider

Figure 4: Architecture Overview

e Asymmetric encoding of company secrefs based on GPG and custom fooling implementation.
e Automatic daily backup system.
Our websifes, tools and APl also use some convenfional preventive fechnics:
e hitps everywhere; we refuse hftp connections.
e Systematic input sanitizations.
e SQL library escaping fo prevent SQL injections.
e Session-less Basic-auth authenticafion for some components, fo prevent Session hijacking atfack.

e Systematic confirmation or check of referrer for significant actions, to prevent Cross-Site Request Forgery.

3.2.2 Security against external fool-chains

Our partners will run some of their code on our cloud accounts. Because some partner could be malicious
or just write fool-chain with bugs, we have to use some specific fechnics:

e The trool-chain will run as an unprivileged user on the cloud virtual machines.

e If several fool-chains need to be run, they will all be launched in a separafred virfual machine.

The virfual machines running fool-chains will not be allowed to access the network (except for clustering)
This rule is ensured twice:

- by a virtual machine firewall;

- by the cloud provider security policies.

Virtual machines have no access fo any of the dafa storages.

Our tool-chain confroller will run polling mechanisms fo send inputs, check rool-chain status and get
results. The virtual machines don’t have any specific access nor credential.

ZephySGence Technical Note on the ZephyCloud Open-API - June, 2018

3.3 API concerns
3.3.1 Overview

We splitted the plafform into separated modules using the Single Responsibility Principle. The modules are
separafed as follows (refer to Figure 4):

e bank: APl responsible for users information and ZephyCoins management

e zephycloud: APl responsible for fool-chain execution

o farm: General web inferface where users can buy credits, launch fools, efc...
e admin: Administrative web interface for Aziugo team

e ZephyCFD: An web inferface dedicafred fo a specific toolchain

We planed fo release several more fool-specific inferfaces, but farm provides a generic interface for public
fool-chains.

The specific inferfaces could be either client-side or web interfaces.

They should communicate directly with our APIs (zephycloud and bank).

Web inferfaces could be integrared directly info the farm web inferface, burt this integration will take place
inside an iframe. Our partners may also develop specific interfaces for their own tool-chains. Our partners
should host their specific web inferfaces by themselves.

3.3.2 Technologies

Zephycloud\

Web API

queue actions x._\\

save and load information (receive and send events ™ send events

Core @cket API |>

save and load information

send events

ssh connection Jssh corjnection !

{ ! ;
{:erate or kill generate or kill
‘// 3

‘ Cloud virtual machine 1 l ‘ Cloud virtual machine 2

/
o

Figure ©: ZephyCloud structure

Because we provide really specialized scientific tools, we don’t expect a significant traffic.
However most of the fools are really computing power infensive so fthat they will all run on cloud virtual
machines, and thus will not have any impact on our modules.

Most modules have their own documentation. You will find here only zephycloud specific technical infor-
mation. For the other modules, please refer to their own documentation.

zephycloud is implemented in python 2.7.
It uses a SQLite database, since most of the data are in a separated module (bank).
This database is responsible for fool-chain process information.

This module is also composed of separated modules, to ensure better security and availability:

Zephy Science

Technical Note on the ZephyCloud Open-API - June, 2018

e The web module: it is responsible for handling requests and queueing actions fo execufe.

e The core module: if runs the queued actions and manages fool-chain process.

e The websockef API: it dispatches information in real-fime fo the clients, allowing push notificafions.
Communication befween modules is based on a Redis server for message passing and the dafabase for dafa
integrity.

The web module

It is a json based http APl that allows to launch the foolchain.
The APl is versioned via url route prefix.
For now, it uses Basic-Auth authentication, but it should use OAuth or similar fechnology for authentication.

It uses nginx as reverse proxy.
It uses gunicorn as Web Server Gateway Interface
It is based on the Flask micro framework.

All API calls are locafted on “hitps://api.zephy-science.com/v1/"
You can also ignore the "v1” folder unfil a new API version is released and sef as defaulr API.

Some generic rules about the requerts:
e All requests should be done via hffps
o All requests should be json requests.
o All requests require the user fo be logged in.
o All requests sending files should call the file argument files]]
o All requests should call a trailing slash url (like a folder address)

All responses should have the following structure, even in case of error:

{
"success": 1
nerro 5 ms ["List of error messages, or empty array in case of success"],
data hatever data. Could be in string, array or object"

The core module

This module is implemented in python.

It consists of a main loop waifing for queued actions fo be launched in the redis server.

For each tool-chain it should launch, it creaftes a separafted process responsible for the tool-chain manage-
ment.

This separafed processes will:

e create the cloud virtual machine using cloud specific library or AP
e push the input files using ssh connections

¢ launch and monifor the tool-chain on the virfual machine

e refrieve the tool-chain resulf

The separafed processes are designed as exception-safe and ensure the cloud virtual machine fo be released
in any case. However the core module also has a virtual machine garbage collection loop.

Zephy Science

Technical Note on the ZephyCloud Open-API - June, 2018

The websocket module

This module aims fo provide real-fime information to the client about the rfool-chain process the user has senf.
It uses client-server encryption using TLS and the websocket API.

An optional goal of this module is to use the new W3C push APl when this APl will be stabilized enough and
implemented across browsers and operafing systems.

It uses internal authenficafion mechanism unfil the OAuth module is ready.

It is based on Python 2.7 and tornado library.

It sends and receives json messages.

It's profocol is also versionned and profocol version negotfiation is done at connection.

It receives messages from the redis server and can read the dafabase as read-only fo limit security issues.

	1 ZephyOpen - the concept
	1.1 Value
	1.2 Criteria for Success
	1.3 Partner Adoption
	1.4 User Adoption

	2 ZephyOpen Usage
	2.1 Pricing strategy
	2.2 Partner Usage
	2.3 End-user Usage

	3 Technical Design
	3.1 Architecture Overview
	3.2 Security
	3.2.1 General security against attackers
	3.2.2 Security against external tool-chains

	3.3 API concerns
	3.3.1 Overview
	3.3.2 Technologies

